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Abstract— Conventional works that learn grasping affor-
dance from demonstrations need to explicitly predict grasping
configurations, such as gripper approaching angles or grasping
preshapes. Classic motion planners could then sample trajec-
tories by using such predicted configurations. In this work,
our goal is instead to fill the gap between affordance discovery
and affordance-based policy learning by integrating the two
objectives in an end-to-end imitation learning framework based
on deep neural networks. From a psychological perspective,
there is a close association between attention and affordance.
Therefore, with an end-to-end neural network, we propose to
learn affordance cues as visual attention that serves as a useful
indicating signal of how a demonstrator accomplishes tasks,
instead of explicitly modeling affordances. To achieve this, we
propose a contrastive learning framework that consists of a
Siamese encoder and a trajectory decoder. We further introduce
a coupled triplet loss to encourage the discovered affordance
cues to be more affordance-relevant. Our experimental results
demonstrate that our model with the coupled triplet loss
achieves the highest grasping success rate in a simulated robot
environment. Our project website can be accessed at 1.

I. INTRODUCTION

Humans tend to understand objects and their parts from
potentially applicable actions or motion primitives that can
achieve effects for accomplishing a task. This phenomenon
is abstracted as an ecological psychology concept called
affordance established by J. J. Gibson ([9]). An affordance
defines a mapping from an object feature to all applicable
actions ([23]). Essentially, an affordance represents an object-
action-effect relationship, which is an interactive procedure
between an actor (e.g. a hand) and an object (e.g. a mug).
Consider the example shown in Fig. 1, in a mug grasping
task, a human teacher’s affordance biases (affordance-effect
judgments) might vary with the shape and size of the mug –
the mug-A is graspable from its handle, whereas the mug-B
is graspable from its body. When a robot learns from human
demonstrations, it would be beneficial if the robot also
discovers such affordance bias behind human demonstrations
and generate (visual) affordance cues to support its learning.

There are several works ([6], [31], [7]) that propose
to learn affordance knowledge from human demonstrations
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Fig. 1. An example of two mugs: Humans should have different affordance-
effect judgments on their bodies or handles. At each step, the robot takes one
depth image (observation) and generates one attention map, a.k.a affordance
cue, that further triggers an action. We also show how the robot eventually
picks up a mug, either by holding the body or handle, by showing the final
step observation.

that avoid a labor-intensive process of collecting affordance
labels. However, previous works fully decouple affordance
discovery from behavior learning and execution, which
means the affordance predictor and the robot controller
are trained or constructed separately. In those methods, the
predicted affordances are fed into classic motion planners
in an engineered fashion. In this work, we instead combine
the learning of affordance knowledge and motion generation
from human demonstrations in an end-to-end deep imitation
learning framework. We further argue that learning visual
attention as affordance cues, rather than explicitly modeling
affordances, is enough to be a reliable latent feature for
the actor. The actor here is also a part of the whole neural
network, instead of being a separate and unlearnable external
planner.

When learning affordance knowledge from demonstra-
tions, visual attention can be an informative cue for in-
ferring affordance. In fact, the close association between
visual attention and affordance has been investigated by
some cognitive psychology works ([2], [14]). According to
them, humans use visual attention conditioned on objects’
geometric and spatial properties to speed up affordance-
effect judgments, which then helps generate motor signals
(behaviors). When the attention comes from a controlled
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mental process (i.e. top-down attention) driven by a task,
object parts that are permittable for accomplishing the task
would be highlighted, from which proper affordance-effect
judgments can be derived ([26]). Indeed, humans do not
explicitly think about what are all possible ways of picking-
up a mug at each of its parts or pixels once she or he already
learned how to grasp different mugs. An earlier work ([19])
also investigates how visual attention could be associated
with affordance cueing in the context of robotics.

In this work, we hypothesize that by encouraging the
robot to attend to discriminative features that explain the
differences between different demonstrated behaviors, the
robot will be able to more effectively discover affordance
information and better imitate human behavior. This is
because when a human teaches affordance knowledge to a
robot, the human tends to think about what makes he/she
have different affordance-effect judgments and how could the
resulting trajectories be accordingly different. Again taking
Fig. 1 as an example, if the human shows two different
trajectories for the robot to pick up the two different mugs,
the robot could discover important discriminative features
regarding mug shapes and sizes and consequently better learn
from demonstrations. If the robot could attend to the handle
of Mug-A, then it would be more likely for the robot to grasp
the Mug-A by its handle, rather than its body.

Therefore, our central problem is to help robots to imitate
humans not only at the behavior level but also with a hidden
objective of discovering the affordance-relevant distinctive-
ness underlying human demonstrations. As such, robot could
attend to appropriate parts of a specific mug that hints on the
same affordance in human’s mind and therefore helps trigger
a similar behavior to humans’. To address the problem,
we propose to use a deep Siamese encoder and trajectory
decoder that are trained jointly with a contrastive loss and
a behavior cloning loss in an end-to-end fashion. We also
propose a coupled triplet loss to encourage the discovered
discriminative features to be more affordance-relevant.

To thoroughly evaluate our work, we compare our model
with a variant version that uses a normal triplet loss, a version
without using Siamese network, and a baseline ConvNet-
based behavior cloning model. We evaluate those models
in terms of the grasping success rates and visualizations
of predicted affordance cues. We empirically show that our
model with the coupled triplet loss performs the best.

To the best of our knowledge, our work is the first to
combine grasping affordance learning and imitation learning
from expert demonstrations based on deep neural networks.

II. RELATED WORKS
A. Affordance Learning for Grasping

Regarding learning affordances for grasping, the majority
of previous works use ground-truth affordance labels to learn
affordances for grasping ([18], [34], [35], [30]). [18] use
thermal maps to learn the graspable positions of several
household objects. [34] employ transfer learning from pre-
trained vision models to pixel-wise affordance prediction
networks that help the robot generalize over novel objects.

[35] also uses pixel-level affordances to identify multi-grasp
possibilities for objects present in a cluttered area.

There are also works that propose to learn affordances
from demonstrations or via imitation learning: [10], [6], [31],
[7]. All of these works share similar frameworks of using
classic unsupervised learning (e.g. clustering) to identify
gripper control parameters that would be fed into a motion
planner. In [10], the affordance is represented by contact
points for grasping an object. They use a predefined tracking
configuration to reduce the number of potential contact points
from demonstrations. After detecting a set of contact points
on a new object, nearest-neighbor classification is used to
identify a template grasp that matches their demonstration
data on similar objects. In [6], [31], [7], they define afford-
able actions in affordances as approaching angles ([6]), grasp
preshape hypotheses ([31]), or grasping prototypes ([7]).
Then they use clustering to find condensed representations
of affordances. In this work, we leverage the expressive-
ness of deep neural networks to implicitly learn affordance
knowledge from human demonstrations. By learning from
demonstrations with a deep contrastive learning framework,
we evade the need of using ground truth affordances.

B. Attention Guided Imitation Learning

Imitation learning or learning from demonstrations [20],
[25] has been at the core of teaching robots to perform
object-manipulation tasks in a similar way to humans per-
forming the same task. By combining visual attention with
imitation learning, robots could learn the information better
by focusing on smaller but more important regions in manip-
ulation tasks. In [1], authors use natural language descriptors
that are specific to the task at hand to generate guided
attention cues. The masked attention method places attention
on the entire object that is to be grasped but does not focus
on the specific region that the robot needs to interact with.
A similar issue can be observed in [24] where the model
first captures attention features of the object by generating
attention maps for different stages of the object manipulation
task. But the robot, in this case, can only learn to imitate the
task and can not decide how to perform a specific task in a
variable environment setting. Hence, one potential advantage
of our approach is that it allows the robot to learn the specific
graspable points in scenarios where the shape of the object
(mug and its handle, in this case) can also vary restricting
the possible graspable areas even for a human.

C. Discriminative Feature Learning

The objective of discriminative feature learning is to make
sure that the learned features of deep neural networks can
represent different inputs contrastively enough [32]. Usually,
such learned features can be easily separated by k-nearest
neighbors algorithms [8]. Various approaches have been
proposed to address the discriminative learning problem for
deep neural networks. One popular approach is Siamese
neural network [4] that was proposed in 1994 for verifying
signatures. Quite a few works used Siamese neural networks
as a backbone for new deep network models of discriminative



feature learning. Siamese neural network can be combined
with ConvNets and trained with a Binary Cross Entropy
loss as in [13], or triplet loss as in [27]). Recently deep
learning based Siamese neural networks are also applied in
many new applications, like face recognition ([27], [28]),
object discovery ([29], [11]), object co-segmentation ([3],
[17], [21]), and re-identification as in [36], [22].

Besides using Siamese neural networks for discriminative
feature learning, [32] proposes to replace normal classi-
fication loss functions in ConvNets with the Center loss.
Center loss works by minimizing the intra-class variations
and meanwhile keeping the inter-class feature variations
separable enough. The work [33] proposes a prototype-based
discriminative feature learning (PDFL) method. The work
[15] follows a similar idea to [32] and designs a discrimina-
tive feature learning algorithm for domain adaption.

III. PROBLEM STATEMENT

Our goal is to encourage robots to learn from expert
demonstrations more efficiently by taking advantage of dis-
covering affordance-relevant distinctiveness underlying all
demonstrations. To capture such distinctiveness, we could
learn an attention model that predicts affordance cues from
observations. We assume that humans have hidden affor-
dance knowledge that is associated with visual cues. When
focusing on a region of an object, humans also know what
could be affordable grasps on that region. The highlighting
of such a region could serve as an affordance cue that
supports the imitation learning of the learner itself.

Our task is to pick up mugs in a way that allows pouring
water in the near future. Hence, a robot could grasp a mug
by reaching its gripper horizontally to the mug body, grasp
the left and right sides of a handle, or grasp the front and
back sides of a handle. Therefore, we have three candidate
affordances (an object part and an applicable grasp): body-
grasp, handle-left-right-grasp, and handle-front-back-grasp,
as shown in Fig. 2.

Mug-A Mug-B

observation observationaffordance-cue affordance-cue

body-grasp handle-left-right-grasp handle-front-back-grasp

Fig. 2. The picture depicts three examples of the three candidate affordable
grasps: body-grasp, handle-left-right-grasp, and handle-front-back-grasp.

We assume that robots share the same embodiment with
humans: a human expert teleporates a robot to collect
demonstration trajectories. The collected trajectories are
categorized in terms of the three candidate affordances.
Each trajectory τ is a sequence of triplets (ot ,st ,a∗t ): τ :=
{(ot ,st ,a∗t )}T−1

t=1
⋃
(sT ,o∗T ). T denotes the trajectory length.

ot denotes a depth image at step t. st denotes a state vector
at t which has eight values: the relative 3-D position of the

gripper to a mug, the relative 3-D Euler orientation of the
gripper to mug, and two finger position values. a∗t denotes
an expert action vector that has seven values: the translation
of x, y, and z; the rotation of roll, pitch, and yaw; and a
value that indicates if the fingers should be closed or not. All
trajectories are categorized into C affordance categories (C
is three in this work). In each category c, there are Nc expert
trajectories {τc

i }
Nc
i=1.

IV. APPROACH

Our framework learns to reproduce humans’ behavior with
visual cues that hint at different affordances from human
demonstrations. The learning of such visual cues is achieved
by training a Siamese encoder, and the policy imitation is
by a behavior-cloning-based trajectory decoder. The Siamese
encoder and trajectory decoder are trained simultaneously in
a contrastive learning framework.

A. A Challenge and A Graphical Model

Since human embeds her/his hidden knowledge of affor-
dances into trajectories of different affordance categories,
intuitively we could use contrastive learning to help discover
affordance cues. A well-known contrastive loss is the triplet
loss ([27]) defined in Equation 1.

L(A ,P,N ) =
N

∑
i=1

[‖ f (Ai)− f (Pi)‖2
2−‖ f (Ai)− f (Ni)‖2

2 +M]+
(1)

where A , P , and N denote the sets of anchor, positive,
and negative trajectories; Ai denotes the i-th trajectory in
A (likewise for Pi and Ni); The i-th positive trajectory is
sampled from the same affordance category of the i-th anchor
trajectory, whereas the i-th negative trajectory is sampled
from a different category. M denotes a margin value, ‖z‖2

2
denotes a squared Euclidean distance metric, [z]+ denotes
any z that is larger than zero, and, f () is an encoding function
that can be parameterized by a neural network.

Contrastive losses encourage a learner to discover re-
curring patterns in one category and discriminative pat-
terns across different categories. From humans’ perspec-
tive, shifting affordance cues would lead to the change of
affordance-effect judgment such that a different action would
be taken. Thus, for two trajectories that come from the
same affordance category, their affordance cues would share
certain similarities; for two trajectories that are sampled from
different affordance categories, their affordance cues tend to
be different.

However, one potential challenge in using traditional con-
trastive learning frameworks is that the agent might learn
to exploit affordance-irrelevant information (e.g. contexts,
initial configurations) to distinguish two trajectories. Inspired
by earlier affordance learning from demonstration works
which extract grasping preshapes ([7]) or gripper-object
approaching orientations ([6]) to learn affordance clusters,
we also extract the segment of interaction state-action
pairs (shortly interaction segment) of each trajectory as



an affordance-relevant feature. An interaction segment of a
trajectory includes the state-action transitions that an actor
(e.g. a gripper) changes the state of a target object. Since af-
fordance is about object-action-effect relationships ([16]), we
use the current state and previous expert action as the state-
action features per step. Specifically speaking, we extract
the interaction state-action transitions from the trajectory τ:
{(st ,a∗t−1)}n

t=m|τ . The curly brackets {}n
t=m mean that the

state of an object changes between the step m and n due to
the motion of an actor.
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Fig. 3. The graphical model of Siamese encoder. Each © denotes a
node that represents a feature. Each directed edge from node X to node Y
represents that “Y” depends on “X”. The	 denotes two nodes (features)
that are generated by the same component one by one. The dashed edge
means that the learning of affordance embedding ZA guides the learning of
observation embedding zo,A

t at each step t.

By contrastively learning from such interaction segments,
we could learn a clean representation of affordances in the
form of embeddings. Such embeddings could be named
affordance embeddings ZA which is computed by using
Equ. 2. We do not directly condition robots’ decision-making
on ZA. Instead, we treat ZA as a guidance to help robots learn
an attention model that extracts an affordance-cue from an
observation for decision-making. To achieve this objective,
we feed state st , image ot , and action a∗t−1 at an arbitrary
step t of a trajectory into a neural network that generates
latent features: an affordance-cue and a processed visual
feature. We then convert such latent features to observation
embedding zo,A

t as illustrated in Equ. 3. In the rest of this
paper, we use ZA and ZA

τ to denote the same thing: an
affordance embedding for an arbitrary trajectory (τ). We use
ZA

τ when we need distinguish among different trajectories.
Likewise for zo,A

t and zo,A
t,τ . Now we can encourage zo,A

t to
be either closer or farther from ZA depending on if the
trajectory that gives zo,A

t belongs to the same affordance
category of the trajectory that gives ZA or not. This is
essentially using the spatial relationships among embeddings
in the space of ZA to guide the learning of observation
encoding (Equ. 3). This way, we link the visual processing
of high-dimensional sensory at any step of a trajectory to

the affordance knowledge that can be learned faster from
the lower-dimensional data of interaction segments.

ZA
τ = f A(interaction-segmentτ) = f A({(st ,a∗t−1)}n

t=m|τ) (2)

zo,A
t,τ = f O(sτ

t ,o
τ
t ,a

τ,∗
t−1) (3)

where f A() and f O() are two encoding functions whose
neural network architectures are explained in Sec. IV-C; ZA

τ

encodes the interaction segment of the trajectory τ; and zo,A
t,τ

mainly encodes the high-dimension observation ot (e.g. a
depth image) at the current step t of the trajectory τ with
auxiliary information like the current state st and previous
ground-truth action a∗t−1.

The graphical model that describes the above idea is illus-
trated in Fig. 3 which shows two transitions in a trajectory.
We start by extracting the interaction state-action segment
of this trajectory. The interaction segment is converted to the
embedding ZA which guides the learning of zo,A

t as explained
before. The current state st , observation ot , and observation
embedding zo,A

t determine what is the proper action at to take.
The generation of zo,A

t depends on an affordance-cue (aff-
cuet ) that is extracted from ot . Note that the embedding zo,A

t
can essentially be viewed as a non-visual part of affordance-
cue. However, in this paper, we focus on the visual part and
we refer to the affordance-cue as an attention map.

B. Siamese Encoder and Coupled Triplet Loss

Based on the graphical model, our design of Siamese
encoder is depicted in the yellow region of Fig. 4. The
Siamese encoder includes a LSTM layer to encode an
interaction segment to generate ZA

τ (ZA for a trajectory
τ). It also includes a trajectory encoder that encodes all
information (image, state, and previous action) per step to
generate zo,A

t,τ (zo,A
t at step t in a trajectory τ). Fig. 4 depicts

the architecture at step t, but in the training phase, we feed
into the Siamese encoder a trajectory of T steps and would
obtain a sequence of observation embeddings {zo,A

t,τ }T
t=1. We

also replicate a Siamese encoder into three copies and they
share the same weights at any time during training. The
three copies take three trajectories as inputs during training:
an anchor, positive, and negative trajectory. The anchor and
positive trajectories are sampled from the same affordance
category of data, while the anchor and negative trajectories
come from two different categories. Given a trajectory, each
copy of Siamese encoder generates ZA

τ and {zo,A
t,τ }T

t=1 for
different possible τ as explained before. Based on Equ. 1, 2
and 3, we propose the coupled triplet loss (Equ. 4) to couple
the learning of the two types of embeddings together.

L(A ,P,N ) =
N

∑
i=1
{[
∥∥ZA

Ai
−ZA

Pi

∥∥2
2−
∥∥ZA

Ai
−ZA

Ni

∥∥2
2 +M]+

+
T

∑
t=1

[
∥∥∥Zo,A

Ai
− zA

t,Pi

∥∥∥2

2
−
∥∥∥Zo,A

Ai
− zA

t,Ni

∥∥∥2

2
+M]+}

(4)



𝒐𝒐𝒕𝒕𝝉𝝉𝝉𝝉
Depth 
Image

𝒔𝒔𝒕𝒕𝝉𝝉𝝉𝝉 and 𝒂𝒂𝒕𝒕−𝝉𝝉
𝝉𝝉𝝉𝝉,∗

𝒔𝒔𝒎𝒎𝝉𝝉𝝉𝝉,𝒂𝒂𝒎𝒎−𝝉𝝉
𝝉𝝉𝝉𝝉,∗ 𝒔𝒔𝒐𝒐𝝉𝝉𝝉𝝉,𝒂𝒂𝒐𝒐−𝝉𝝉

𝝉𝝉𝝉𝝉,∗
𝒁𝒁𝝉𝝉𝝉𝝉𝑨𝑨

LSTM (𝒇𝒇𝑨𝑨)

𝒂𝒂𝒕𝒕
𝝉𝝉𝝉𝝉,∗

𝐂𝐂𝐂𝐂𝒐𝒐𝒐𝒐(𝒐𝒐𝒕𝒕𝝉𝝉𝝉𝝉)
Trajectory 
Decoder

𝒔𝒔𝒕𝒕𝝉𝝉𝝉𝝉

�𝒂𝒂𝒕𝒕𝝉𝝉𝝉𝝉
𝒛𝒛𝒕𝒕,𝝉𝝉𝝉𝝉
𝒐𝒐,𝑨𝑨

𝐚𝐚𝐚𝐚𝐚𝐚-𝐜𝐜𝐜𝐜𝐞𝐞𝐭𝐭𝝉𝝉𝝉𝝉

Trajectory 
Encoder (𝒇𝒇𝑶𝑶)

anchor 
(𝝉𝝉𝝉𝝉)

Siamese 
Encoder LSTM (𝒇𝒇𝑨𝑨)…

…

𝒔𝒔𝒕𝒕,𝒂𝒂𝒕𝒕−𝝉𝝉∗
𝒕𝒕=𝒎𝒎
𝒐𝒐

Interaction State-Action Segment

State and Action

Observation 1

2

3

1

2

3

𝒐𝒐𝒕𝒕𝝉𝝉𝝉𝝉
Depth 
Image

𝒔𝒔𝒕𝒕𝝉𝝉𝝉𝝉 and 𝒂𝒂𝒕𝒕−𝝉𝝉
𝝉𝝉𝝉𝝉,∗

𝒔𝒔𝒎𝒎𝝉𝝉𝝉𝝉,𝒂𝒂𝒎𝒎−𝝉𝝉
𝝉𝝉𝝉𝝉,∗ 𝒔𝒔𝒐𝒐𝝉𝝉𝝉𝝉,𝒂𝒂𝒐𝒐−𝝉𝝉

𝝉𝝉𝝉𝝉,∗
𝒁𝒁𝝉𝝉𝝉𝝉𝑨𝑨

LSTM (𝒇𝒇𝑨𝑨)

𝒂𝒂𝒕𝒕
𝝉𝝉𝝉𝝉,∗

𝐂𝐂𝐂𝐂𝒐𝒐𝒐𝒐(𝒐𝒐𝒕𝒕𝝉𝝉𝝉𝝉)
Trajectory 
Decoder

𝒔𝒔𝒕𝒕𝝉𝝉𝝉𝝉

�𝒂𝒂𝒕𝒕𝝉𝝉𝝉𝝉
𝒛𝒛𝒕𝒕,𝝉𝝉𝝉𝝉
𝒐𝒐,𝑨𝑨

𝐚𝐚𝐚𝐚𝐚𝐚-𝐜𝐜𝐜𝐜𝐞𝐞𝐭𝐭𝝉𝝉𝝉𝝉

Trajectory 
Encoder (𝒇𝒇𝑶𝑶)

Siamese 
Encoder LSTM (𝒇𝒇𝑨𝑨)…

…

1

2

3

𝒐𝒐𝒕𝒕𝝉𝝉𝝉𝝉
Depth 
Image

𝒔𝒔𝒕𝒕𝝉𝝉𝝉𝝉 and 𝒂𝒂𝒕𝒕−𝝉𝝉
𝝉𝝉𝝉𝝉,∗

𝒔𝒔𝒎𝒎𝝉𝝉𝝉𝝉,𝒂𝒂𝒎𝒎−𝝉𝝉
𝝉𝝉𝝉𝝉,∗ 𝒔𝒔𝒐𝒐𝝉𝝉𝝉𝝉,𝒂𝒂𝒐𝒐−𝝉𝝉

𝝉𝝉𝝉𝝉,∗
𝒁𝒁𝝉𝝉𝝉𝝉𝑨𝑨

LSTM (𝒇𝒇𝑨𝑨)

𝒂𝒂𝒕𝒕
𝝉𝝉𝝉𝝉,∗

𝐂𝐂𝐂𝐂𝒐𝒐𝒐𝒐(𝒐𝒐𝒕𝒕𝝉𝝉𝝉𝝉)
Trajectory 
Decoder

𝒔𝒔𝒕𝒕𝝉𝝉𝝉𝝉

�𝒂𝒂𝒕𝒕𝝉𝝉𝝉𝝉
𝒛𝒛𝒕𝒕,𝝉𝝉𝝉𝝉
𝒐𝒐,𝑨𝑨

𝐚𝐚𝐚𝐚𝐚𝐚-𝐜𝐜𝐜𝐜𝐞𝐞𝐭𝐭𝝉𝝉𝝉𝝉

Trajectory 
Encoder (𝒇𝒇𝑶𝑶)

Siamese 
Encoder LSTM (𝒇𝒇𝑨𝑨)…

…

1

2

3

positive
(𝝉𝝉𝝉𝝉)

shared weights 

negative
(𝝉𝝉𝝉𝝉)

shared weights 

Siamese Encoder and Trajectory Decoder at time 𝒕𝒕

AiAiAi

PiPiPi

NiNiNi

Fig. 4. The overall contrastive learning architecture of Siamese encoder and trajectory decoder. The dashed edge with an orange arrow means that the
distance between its connected features needs to be minimized.

Depth 
Image

192x192x1

Conv Conv Deconv

FC(32) tile_to_
dim_xy

reshape
(1,1,32)

36x36x64

36x36x64

Conv

Channelwise
Softmax Concat

Flatten LSTM FC(32)

𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐(𝒐𝒐𝒕𝒕𝝉𝝉)

𝒛𝒛𝒕𝒕
𝒐𝒐,𝑨𝑨

𝐚𝐚𝐚𝐚𝐚𝐚
− 𝐜𝐜𝐜𝐜𝐞𝐞𝐭𝐭

𝝉𝝉

𝒔𝒔𝒕𝒕𝝉𝝉 and 𝒂𝒂𝒕𝒕−𝝉𝝉
𝝉𝝉,∗

Feature 
map

×2 ×2

×2 ×2

192x192x1

Conv Deconv

FC(32) tile_to_
dim_xy

reshape
(1,1,32)

36x36x64

36x36x64

Channelwise
Softmax Concat

Flatten LSTM FC(32)

𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐(𝒐𝒐𝒕𝒕𝝉𝝉)

𝒛𝒛𝒕𝒕,𝝉𝝉
𝒐𝒐,𝑨𝑨

𝐚𝐚𝐚𝐚𝐚𝐚-𝐜𝐜𝐜𝐜𝐞𝐞𝐭𝐭

𝝉𝝉

𝒔𝒔𝒕𝒕𝝉𝝉 and 𝒂𝒂𝒕𝒕−𝝉𝝉
𝝉𝝉,∗

Feature 
map

×2 ×2

×2 ×2

Conv

Conv

Fig. 5. The detailed architecture of the trajectory encoder module. “×#” denotes that a neural network component needs to be replicated # times.

where A , P , and N are the anchor, positive, and negative
sets of demonstration trajectories; Ai denotes the i-th trajec-
tory in A (likewise for Pi and Ni); T denotes the length
of an arbitrary trajectory; f A() and f O() are explained under
the Equ. 3, which generates an affordance embedding ZA

and a observation embedding zo,A
t respectively. ZA

τ (τ could

be either Ai, Pi, or Ni) denotes an affordance embedding
ZA for a trajectory τ; Likewise, zo,A

t,τ denotes an observation
embedding zo,A

t for a trajectory τ; the Sec. IV-C explains
f O() in more details.

The coupled triplet loss can be decomposed into two
contrastive learning objectives in the two square brackets []+



that are summed together. The first objective contrastively
learns affordance embedding ZA from all extracted interac-
tion segments. ZA could also be learned faster due to the
low-dimensionality of interaction segment data. The second
objective uses ZA to guide the learning of the observation
embedding zo,A

t . Note that Zo,A
Ai

is adjusted by both of the af-
fordance embeddings zA

t,Pi
and zA

t,Ni
. This way of formulating

the coupled triplet loss provides a strong training signal for
the observation encoder that generates zo,A

t . In this sense, the
learning of the embeddings ZA and zo,A

t are coupled together.

C. The Details of Siamese Encoder

The architecture of a Siamese encoder at an arbitrary time
step is illustrated in the yellow region of Fig. 4 and with
more details in Fig. 5. The input can be either an anchor,
positive, or negative trajectory. The definition of a trajectory
is explained in Sec. III.

We start by explaining the detailed formulation of the
encoding function f A(). At the initial step of an input
trajectory, we append a dummy action vector of all zeros
to provide a dummy previous action for the first step. We
extract the interaction segment between the step m and n
and feed them into an LSTM network ( f A()) to generate the
affordance encoding ZA. In our work, the values of m and
n are provided by a human expert. But in reality, m and n
can be determined by tracking when the relative pose of the
target object to gripper starts and stops changing.

We now explain the formulation of the encoding function
f O(). To process the observation encoding Zo,A

t per step
t of a whole trajectory, we feed it step-by-step into the
trajectory encoder ( f O()) module of Siamese encoder. As
depicted in Fig. 5, the trajectory encoder module is a two-
branch architecture. The bottom branch is used to process
visual features and the top branch is used to process low-
dimensional features like state and action vectors. The top
branch concatenates state and action together and feeds them
to a fully-connected layer. After that, it tiles (repeats) the
fully-connected layer feature along the x and y dimensions
(e.g. 36× 36) of the visual feature map generated after the
third convolutional layer at the bottom branch. This way,
the feature map representation of low-dimension inputs is
merged with the convolutional features of visual inputs by
element-wise addition. Then two deconvolution layers are
used to generate a two-channel feature map. After applying
the feature map with a channel-wise Softmax, its two chan-
nels represent graspable and non-graspable probabilities per
pixel respectively. We then extract the first channel of this
feature map as an attention map (affordance-cue), aff-cuet .
Note that in our work, such attention maps are essentially
latent attention maps because their spatial dimension matches
that of the first convolution layer (Conv(oτ

t )) output, rather
than the dimension of a raw input image. We then concate-
nate aff-cuet with Conv(oτ

t ). After this, the two convolutional
layers, one LSTM network, and two fully connected layers
are used to generate Zo,A

t . In our work we set the encoding
size of Zo,A

t to 32.

𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐(𝒐𝒐𝒕𝒕)

𝒛𝒛𝒕𝒕
𝒐𝒐,𝑨𝑨

𝐚𝐚𝐚𝐚𝐚𝐚-𝐜𝐜𝐜𝐜𝐞𝐞𝐭𝐭𝝉𝝉

𝒔𝒔𝒕𝒕𝝉𝝉

Feature 
map

Feature 
map

Flatten �𝒂𝒂𝒕𝒕
×2 ×3

Conv FC(7)

Conv

tile_to_
dim_xy

Concat

Concat

Fig. 6. The detailed architecture of the trajectory decoder. “×#” denotes
that a neural network component needs to be replicated # times.

D. Policy Network as Trajectory Decoder

The design of our trajectory decoder is based on a
convolutional policy network, as illustrated in Fig. 6. The
inputs include current state st , the latent convolution feature
Conv(ot), the affordance cue (aff-cuet ), and the contrastive
embedding zo,A

t . Since we treat a discovered affordance
cue as an attention feature, we multiply aff-cuet with each
channel of the convolution feature Conv(ot).

We concatenate st and zo,A
t together and obtain a new 1-D

feature. We then tile (repeat) it across x and y dimensions of
the visual feature map generated by the first convolutional
layer at top branch. This way, we could concatenate the
visual feature Conv(ot), state feature st , and contrastive
embedding zo,A

t together along the channel dimension. This
new feature is then fed into two convolution layers and three
fully connected layers to obtain a predicted action ât .

The loss function for behavior decoding is based on a
behavior cloning loss in Equ. 5. The overall loss function for
training the entire Siamese encoder and trajectory decoder
is a sum of the coupled triplet loss (Equ. 4) and behavior
cloning loss (Equ. 5), which enables a simultaneous learn-
ing of affordance knowledge and affordance-aware grasping
from expert demonstrations.

lossbc =
N

∑
i=1
{

T

∑
t=1

[L1(a∗t , ât)+L2(a∗t , ât)]|τi} (5)

where L1 and L2 denotes L1-norm and L2-norm respectively;
T denotes the length of a trajectory; |τi denotes that the
ground-truth action a∗t is from the i-th trajectory τi in dataset.

E. Testing a Trained Model
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Fig. 7. The overall architecture of Siamese encoder and trajectory decoder
in testing phase. The rectangular filled with black color means that the model
weights are fixed. The dashed arrow and box represent that the prediction
of action ât at each step would be fed into the Trajectory Encoder at the
next step.

When we test a trained Simease encoder and trajectory
decoder (Fig. 7), we fix their neural network weights. Since



we do not start with an entire trajectory, there is no interac-
tion segment that provides an affordance embedding. Instead,
the trained weights in Trajectory Encoder already obtained
affordance knowledge due to the coupled triplet loss (Equ.
4). Once the trajectory decoder outputs a predicted action ât
at step t, the ât , rather than a ground-truth action as in Equ.
3, would be used for the computation at step t +1.

V. EVALUATION

We design our experiments in order to answer the follow-
ing questions: 1) How helpful is the coupled triplet loss?
2) How helpful is the contrastive learning framework with
a deep Siamese network? 3) How good is our model in
comparison with a state-of-the-art baseline?

To answer 1, we compare our full model with a version
that uses a normal triplet loss; to answer 2, we compare our
full model with a version that does not have Siamese network
and is trained totally based on behavior cloning losses;
to answer 3, we compare our full model with a recently
published work [20] as a baseline. Since we essentially solve
an affordance-aware imitation learning problem for robotic
grasping tasks, our evaluation metric involves grasping suc-
cess rates which has been widely used for evaluating the
learning of grasping/manipulation tasks (e.g. [12], [25]). We
also show and analyze predicted affordance cues in a video
from our project website1 and partially in Fig. 1.

A. Evaluation Domain and Data Collection

In our evaluation domain as shown in the leftmost region
of Fig. 1, we have a mug that is put in front of a Franka
Panda Arm in the PyBullet simulator [5]. We use 24 mugs
in our experiments. These mugs have different affordance
characteristics and each belongs to one or more of the three
affordance categories. The task for the robot is to pick up
the mug and lift it up for 5 centimeters. To do this, the robot
needs to intelligently infer the best way of grasping the mug,
e.g., by its body, the left and right sides of its handle, or the
front and back sides of its handle. This domain reflects a
common service that humans may need from robots in our
everyday lives. This domain is also sufficient for evaluating
our algorithm due to the fact that naturally there are a large
number of mugs that have different structures and geometric
characteristics. It could even be necessary to consider totally
different ways of grasping them from different locations.

When we collect data, we randomly select a mug model
and put it in a predefined position. We fix its initial pose
across all of our experiments to guarantee the existence of
an affordable grasp that can be categorized into either of our
three affordance categories. All demonstration trajectories
are 8 steps long. We use PyBullet’s function of reading
users’ debugging commands to interactively move the gripper
to a good target pose with a mouse. Once the gripper is
moved to an ideal target pose, the robot then executes with
that target pose, and relevant information like observation,
action, and state are recorded. We collect 27 trajectories for
our training dataset. After every 10 training epochs, we test

a model by randomly sampling 20 mugs and perform 20
grasps, respectively, and then record the success rate.

B. Experimental Results and Analysis

The quantitative performance is measured by grasping
success rates and the qualitative performance is evaluated by
showing predicted affordance cues in our video as mentioned
before. The grasping results of our model, the baseline,
and ablation study models are reported in Table I. The
success rate values are the highest testing success rates
that a model achieves across all learning epochs. Table I
provides experiment results of grasping success rates for four
models: 1. our Siamese encoder with coupled triplet loss; 2.
our Siamese network without coupled triplet loss (we apply
normal triplet loss on observation embeddings); 3. our model
that is not trained in a contrastive learning framework, and
4. a baseline behavior cloning work [20].

Model Success Rate
1. Ours (Full Model): Siamese + Coupled Triplet Loss 65%

2. Ours (Ablation): Siamese + Normal Triplet Loss 35%
3. Ours (Ablation): Without Contrastive Learning 45%

4. Baseline [20] 25%

TABLE I

The results clearly show the advantage of using our cou-
pled triplet loss with a Siamese neural network for the learn-
ing of affordance cues and grasping from demonstrations. An
interesting finding is that the model 3 still performs better
than model 2. This suggests that merely doing contrastive
learning at observation level via the normal triplet loss could
misguide the policy learning. Instead, the coupled triplet loss
in this work contrastively learn affordance embeddings to
guide the learning of observation encoding.

VI. CONCLUSIONS AND FUTURE WORKS

We present an imitation learning algorithm that seeks
training guidance not only from teachers’ actions but from
simultaneously discovering teachers’ hidden affordance bias
as well. We propose a contrastive learning framework with
a Siamese encoder for affordance discovery and a trajectory
decoder for policy learning. We represent affordance cues as
visual attention. We further propose the coupled triplet loss
to encourage the learned discriminative features to be more
affordance-relevant. To the best of our knowledge, we ini-
tialize the direction of bridging the gap between affordance
discovery and policy engineering/learning by achieving the
two objectives together via an end-to-end deep neural net-
work. Our work inherits the benefits of the class of works
that learns affordances from demonstrations: there is no need
of collecting ground-truth affordance labels for each image
or pixel. However, such works focus on affordance learning
and predicted affordances is still used by external motion
planners. Our evaluation shows that our algorithm achieves
the highest grasping success rate and predicts meaningful
affordance cues. We believe our learning framework has a



larger potential for solving more complex tasks, which could
be pursued in the future extensions of this work:

1) The tasks that involve multiple levels of interactions, in-
stead of only the interaction between gripper and mug. Most
tool-using tasks would require multiple levels of interactions;

2) The prediction of affordance-cue could be conditioned
on different high-level tasks such that the attention map
would be different even on the same object but w.r.t dif-
ferent tasks. In our work, we have a fixed high-level task
of picking-to-pour-water, but if there is another task like
pick-and-relocate, the discovered affordance cues might be
different. This can be achieved by integrating our work into
a hierarchical imitation learning framework.

3) It might also be interesting to explore how the coupled
triplet loss could also be used to address other robot learning
problems other than affordance-aware policy imitation.
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