
Making Smart Homes Smarter: Optimizing Energy
Consumption with Human in the Loop

Mudit Verma
Delhi Technological University

New Delhi, India
mudit.verma2014@gmail.com

Siddhant Bhambri
Delhi Technological University

New Delhi, India
siddhant4dtu@gmail.com

Saurabh Gupta
IIIT-Delhi

New Delhi, India
saurabhg@iiitd.ac.in

Arun Balaji Buduru
IIIT-Delhi

New Delhi, India
arunb@iiitd.ac.in

Abstract—Rapid advancements in the Internet of Things (IoT)
have facilitated more efficient deployment of smart environment
solutions for specific user requirement. With the increase in the
number of IoT devices, it has become difficult for the user to
control or operate every individual smart device into achieving
some desired goal like optimized power consumption, scheduled
appliance running time, etc. Furthermore, existing solutions to
automatically adapt the IoT devices are not capable enough
to incorporate the user behaviour. This paper presents a novel
approach to accurately configure IoT devices while achieving the
twin objectives of energy optimization along with conforming
to user preferences. Our work comprises of unsupervised clus-
tering of devices data to find the states of operation for each
device, followed by probabilistically analysing user behavior to
determine their preferred states. Eventually, we deploy an online
reinforcement learning (RL) agent to find the best device settings
automatically. Results for three different smart homes data-sets
show the effectiveness of our methodology. To the best of our
knowledge, this is the first time that a practical approach has
been adopted to achieve the above mentioned objectives without
any human interaction within the system.

Index Terms—Internet of Things; Unsupervised Clustering;
Markov Decision Processes; Reinforcement Learning

I. INTRODUCTION

The increasing involvement of smart devices in our lives
has necessitated us to come up with better coordination and
management strategies for increased efficiencies and Quality
of Service (QoS). This increase in the number of devices
has resulted in higher energy consumption by households
and has led to the problem of energy optimization. Many
organizations are investing in extensive research to come up
with strategies to make utilization of energy as efficient as
possible. Smart Homes or Smart Devices is one such area
that makes use of Information & Communication Technologies
for finding solutions to such environmental issues. With the
help of embedded intelligence, such devices can target the
preferences of a user during everyday life. However, cogency
of such results is critical [1], [2]. With the installation of
smart meters along with these devices at homes, we can find
effective ways to provide users with a visualization of their
energy consumption pattern in a way they can comprehend
[3]. Furthermore, we can even find ways to make intelligent
systems that can recommend users or act on their behalf,
based on their past power consumption behavior, to achieve
the goal of minimizing electricity wastage. The objective here

needs to be to prevent any unnecessary consumption of energy,
preserving the comfort and productivity of the user. In smart
homes, a vast number of heterogeneous appliances, sensors,
and actuators inter-operate and provide context information,
which in turn, together with user preferences, are used to
effectuate a value-added functionality dynamically. A smart
home needs to be able to analyse the actions of its occupant,
taking into account the context information, to proactively
recognize the occupants activity to conserve energy. Therefore,
while creating such systems, one must proceed in a way such
that the intelligent planners policies in promoting efficient
energy usage in households must take into account the users
choices and behavior for utmost user satisfaction [4].

Another study of devices reveals a framework where cluster
analysis is done in a three-part architecture, starting with main-
taining the sequence of individuals activities during the day,
showing how long each activity is carried out and ending with
finding the clusters for different activity patterns for the group
of users [5]. However, the results from this analysis have not
been put to any efficient use for the user. Another intelligent
planning approach has three entities: the manufacturers who
provide the state information, the SESPs (Smart Environment
Service Providers) who manually assess the device states and
the users get a recommended set of actions to reduce energy
consumption [6]. The two frameworks combined cater to the
problem, but a lot of manual effort is involved and therefore,
faces a lot of challenges regarding the feasibility. Hence,
we aim to overcome these challenges by applying a very
simple yet effective approach to automate the entire framework
from collecting and analysing user data to taking decisions in
accordance with the users preferences without involving any
manual effort of any kind, once the framework is deployed.

We first elaborate on these and some other challenges along
with solutions focused on only some specific parts of the
complete problem at hand in Section 2. In Section 3, we
explain our approach to adaptively configure smart devices in a
smart home through the effective incorporation of probabilistic
user behaviour(s). Then, we present a method to automate
the complete process of collecting the state information (i.e.,
finding clusters for different activity patterns), followed by
analysing it to define the quality of states (i.e., assess the de-
vice states keeping in mind the user preferences). Eventually,
we formulate a RL technique for recommending actions to

ar
X

iv
:1

91
2.

03
29

8v
3

 [
cs

.A
I]

 4
 M

ay
 2

02
0

the user to achieve the set goal of optimal power consumption
in Section 4. We conclude by presenting the results of our
approach in Section 5 followed by the conclusion in Section
6.

II. RELATED WORK

The increase in computing power in constrained environ-
ments have allowed researchers to experiment and come up
with new and better approaches to solve some critical problems
using the power of artificial intelligence. Hence, there have
been some approaches proposed earlier which either have been
mainly theoretical in nature or have focused only on one
specific part of this problem statement. We present a brief
discussion on these methodologies adopted by researchers in
the past.

In works that study the behavioural clustering of devices,
Adika et.al. present a method where appliances are clustered
together based on their hourly energy consumption data [7].
Then a time of use probability distribution is made, and each
cluster is given a schedule, making this a job scheduling
problem which is solved using dynamic programming. The
challenge here is to predict the correct cost of energy for the
next hour. Consequently, the scheduling assumes that the error
in predicting the cost is minimum. However, the approach does
not focus on any method to suggest the user ways to cut down
on excessive power consumption.

In yet another approach, the authors introduce a generic way
of creating a Peer to Peer (P2P) overlay network using Hydra
middle ware [8], [9]. The authors talk about collecting and
displaying energy consumption data using several data visu-
alisation techniques. The approach does not have intelligent
monitoring or recommendation for the users, which makes us
ask the question of whether the data visualisation effects the
users understanding of energy consumption or not [3].

Wei et. al. show another general architecture for design-
ing the energy consumption monitoring and energy-saving
management system that are IoT based [10]. According to
this work, IoT infrastructure has three levels: the bottom-
most level collects data from different sensors, the middle
level which is the network layer talks about data transmission,
and the topmost level processes the collected and transferred
data using cloud computing and fuzzy pattern recognition
techniques. A 3-component architecture was also introduced
to cater to an intelligent household lighting system for efficient
energy consumption, including users context information such
that the systems behaviour conforms to user satisfaction [11].
Although this approach talks about an intelligent planner, it
is limited to the lighting systems and uses a static algorithm
(minimum light intensity control) to control the lights. Hence,
the approach is not efficient when it comes to dynamic
environments where user behaviour is prone to change or in
a real-life setting where a set of diverse electrical equipment
or appliances are present.

Yau et. al. base their technique on Markov Decision Process
(MDP), assuming there are three entities [6]. Firstly, the
manufacturer provides the set of device states, secondly a

SESP (Smart Environment Service Provider) who analyses
the state information and lastly, the MDP planning algorithm
which makes a policy of states and actions along with a user
who receives these actions suggested by the MDP and acts
accordingly in the given environment. The approach assumes
a Central Module which collects all the information and does
the heavy lifting, in turn, solving the problem of having
a constrained environment. The approach involves manual
human intervention, firstly as the manufacturer who supplies
information on the devices and then in the role of SESP who
performs analysis on the data. Also, The results are shown over
simulation, and the approach is never used on a real data-set.

The methodology used by Jahn et. al. and Byun et. al.
makes us understand the major approaches for collecting data
from appliances and hence, helps us move in the direction
of intelligent planning [8], [11]. The architecture proposed
by Wei et. al. is a general way to move from the stage
of data collection to intelligent planning [10]. There are
existing approaches that are perfectly capable of achieving
optimal energy consumption, taking the assumption that the
user behaviour is not dynamic, and the price prediction has
minimum error [7], [11]. The approach used by Yau et. al.
uses RL and hence, is capable of dealing with a change in user
behaviour [6]. However, the role of entities like manufacturer
and SESPs can be automated. In this work, we find the quality
of states based on the user behaviour, which keeps on updating
itself to improve with time. The work presented in this paper
is an advancement of the approach discussed in [6].

III. PROPOSED METHODOLOGY

We use a top-down strategy to explain the complete method.
First, we give an overview of the whole system and interac-
tions between logical sub-sections. Then we dissect each part
and discuss our approach in depth.

A. Flow of Data

Fig. 1: The flow of data in proposed framework.

According to Figure 1, the model is divided into three
segments.

Segment A: This is the first segment in the entire flow of
data inside our model. The data is collected from the user, and
his/her behaviour/preferences are recorded, which comprise of
an Action and an Actuation as shown in steps 1.a and 1.b of
the figure. We define the actual actions taken by the user to
change the device settings as Actuations whereas the stochastic
actions relevant to the RL agent are termed as Actions, and
these are received by the Mapper.

Segment B: In the second segment, the devices’ power
consumption values are clustered to determine device modes,
Di

ni for ith device, where the device has ni modes of
operation. These device modes are again clustered together
to form m domain states DS = {DS1, DS2...DSm}. Hence,
DSi = (D1

n1 , D2
n2 , ...Dk

nk) for k devices. Therefore, Di

signifies device-level representation whereas DSi is represen-
tative of the entire set of devices.

Segment C: The domain states act as an input to the third
and last section, i.e. Segment C, where our RL algorithm takes
a suitable decision with respect to choosing a domain state
optimally. Transition Probability Matrix and Reward Matrix
are two essential components of our RL algorithm which
are fed as inputs and these are computed using the Domain
States. The RL agent generates an output and compares these
with the historical data during the learning phase. It suitably
adapts to the users behavior and updates the probabilities of
transitioning from one domain state to another.

The Mapper entity in segment A of Figure 1 is simulated
for the results in our paper as mentioned in sections III-C
and V. It is a many-to-many mapping where several actual
device settings can correspond to internal device modes and
vice versa. This mapping simplifies our approach to search
for the appropriate device modes which a user can toggle
through a suitable actuation. The live data input source will
require recording the actuation signalled by the user and the
corresponding device mode action. This mapping may also
be clubbed with the clustering algorithms as a feature input
so that the clustered nodes also have information about the
actuation. Other methods may involve finding the best possible
actuation (such as by using costs incurred in shifting device
modes) which corresponds to some device action in step 8.b
of Figure 1.

B. Two-Step Clustering

As our first step in our proposed approach, we intend to
remove the use of SESPs [6] who manually provide device
modes & label them as good or bad. This manual labour
inhibits the system to achieve complete automation. The two-
step clustering refers to using the available raw user data to
form device mode clusters followed by using these device
modes to form domains state clusters.

We use the data of user actions and perform clustering
using time features (hour, month & year) and device power
consumption for device modes, where a device is not aware of
the existence of another device which ensures independence
of device usage, a qualitative feature of appliances/devices in
real-life. Hence, device modes are clustered output equivalents

Fig. 2: Possibilities available to a state given the actions: STAY
and MOVE

of device actuations as discussed in III-A. Domain states, on
the other hand, are clustered outputs which take all the devices
into consideration, wherein the states are built up by the use
of all of the devices modes clustered together.

We use Growing Neural Gas clustering algorithm which
yields us with a graph when the input data is projected onto a
2D space. Each vertex of this graph corresponds to a neuron
in which input data has been mapped. GNG learns through a
combination of updated Kohonen learning approach to adjust
the positions of the neurons along with a Competitive Hebbian
Learning (CHL) approach for its connections [12]. The number
of connected components in this graph represent the total
number of clusters.

C. Actions and Actuations

As defined in Segment A of III-A, we further explain
these two terms. Initially, we consider a users historical data
to supply the actions, i.e., if the current domain state and
previous domain state are same, it is taken to be a STAY action,
otherwise, MOVE. For example, let the current domain state
for 5 devices be (1,1,0,3,2) and the next domain state for the
same 5 devices be either (1,1,0,3,2) or (1,1,0,2,0). In the first
scenario, where the device mode values remain the same for
all 5 devices, it is said to be a STAY action whereas in the
second case wherein the device mode values changed for the
last two devices, it is said to be a MOVE action.

To obtain the actuations, we select 30% of our training
data points for which actions differ from the actuations. This
implies that the actions and actuations are drawn from a similar
distribution. Thus, there are certain data points where a STAY
action may have resulted in MOVE and vice-versa. Hence,
these 30% positions signify the underlying stochasticity in the
model. We label the time-stamps signifying the actual MOVE
and STAY actions as M and S, and the states representing
actuations as m and s.

Now, the model has a probability Pdd′(i ∩ j) which rep-
resents the state transition from domain state d to d when
actuation i and action j occurred, where i ∈ {m, s} and
j ∈ {M,S}. However, these actuations are for training dataset
only. For testing data, we find actuations as in section V.
Figure 2 shows a sample transition between any two random
domain states s0 and s1 with the agent currently at s0. Due
to the attached stochasticity, both MOVE and STAY action
can result in a transition from s0 to s1 or transition back to
the same state s0. Note that the sum of probabilities for all
transitions as MOVE or STAY is unity, which is implicit.

D. Domains State Types

For understanding the domain states qualitatively, we ex-
amined the training data set and divided these domain states
into two broad categories- high demand (HD) states and low
demand (LD) states. The HD states are the most frequently
visited states by the user whereas, on the other hand, LD states
are the least visited states. Let us say that top percent of the
total number of domain states comprise of HD states and the
remaining are the LD states.

In a real-life scenario, there may be some domain states
which the user may prefer to stick to, irrespective of the output
of the RL agent and these domain states could intuitively fall
under both the categories. We refer such domain states as
strict high demand (SHD) states and say, that the HD states
comprise of fixHD percent of SHD states and the remaining
HD states are termed as loose high demand (LHD) states for
simple reference. Similarly, there may be some infrequently
occurring states, i.e. LHD states which the user may prefer
to stick to. We refer such domain states as strict low demand
(SLD) states and say, that the LD states comprise of fixLD

percent of SLD states and the remaining LD states are termed
as loose low demand (LLD) states for simple reference.

E. Reinforcement Learning Agent

For our RL agent formulation, we intended to experiment
with a simple RL model and hence used the MDP algorithm
which provided us satisfactory results. Therefore, this section
highlights our MDP formulation for the given problem setting.
Henceforth, this provides us with a future opportunity of
modelling the current problem statement using more complex
RL algorithms and compare the results as shown in the current
approach. A Markov Decision Process is a reinterpretation of
Markov Chains which includes an agent and a decision-making
process [13]. Our MDP is characterised by the following
components:

1) State Space: S = d0, d1, ..., dm where di represents ith

domain state,
2) Initial State: d0 the first domain state in data-set,
3) Actions: A = a0, a1 where a0 is STAY and a1 is MOVE,
4) Transition Model: T (s, a, s′) and
5) Reward Function: R(s) = −1 ∗

totalPowerConsumptionOfDomainState.
1) State Space: The clustering of domain states provides

an implicit functionality of state space reduction for MDP;
therefore, preventing state space explosion. It is possible to
perform domain state clustering directly, without the use of
first level device mode calculation. However, to enforce the
MDP outputs on the system, we must know to which device
mode MDP is asking the devices to move, and thus the need
for finding device modes.

2) Transition Matrix: The transition matrix returns the
probability of reaching the state s if action a is taken in state
s. We use the training data set to compute this matrix. These
transitions are governed by the reward received by the RL
agent on taking a particular action a in state s to reach a

new state s. The Reward function R(s) returns a real value
every time the agent moves from one state to the other. The
agent receives a higher reward (less negative in value) when
it reaches one of these desirable states.

3) Updating Transition Matrix: The RL agent gets the
current domain state as the input and finds the state the
user should be in, which is the output of the MDP function
mdp(st). While learning on the training data, the MDP agent
calculates the number of clashes which take place when the
user transitioned to another state while the RL agent recom-
mended a different state. Our MDP algorithm runs online and
is, therefore, able to adapt during the testing phase as well.
When such a clash occurs, an update of the Transition Matrix
involves reducing the probabilities of MDP outputs by a factor
e = 0.1 and increasing the probabilities of states belonging to
the sets SHD and SLD, finally normalizing to maintain the
probability sum as unity.

4) MDP Algorithm: The user actions have been modelled
via the transition matrix, whereas the need for optimal power
consumption is taken care of by the Reward Function. We
implement our MDP using policy iteration algorithm where
the agent chooses the best state using a policy. Policy iteration
is guaranteed to converge to the optimal policy, and it often
takes fewer iterations to converge than value iteration. The
maximum expected utility principle states that a rational agent
should choose its action that maximizes its maximum utility
[14]. The utility of a single state is defined as:

U(s) = E[

∞∑
t=0

γtR(st)] (1)

The utility of a state s is correlated with the utility of its
neighbor at s′ as:

U(s) = R(s) + γmax
∑
s′

T (s, a, s′)U(s′) ; γ = 0.9 (2)

5) Reward Function: To account for the objective of re-
ducing excessive power consumption, we planned to make
use of a simple reward function that caters to our aim of
rewarding the RL agent to make a transition to a state where
the total power consumption is less than that at the current
state. Hence, we want to penalize the domain states with
higher power consumption and reward the domain states with
lower power consumption. Therefore, we negate the parameter
totalPowerConsumptionOfDomainState to imply a more
substantial reward for the domain states with lower power
consumption.

6) Reward Matrix: The reward matrix is calculated by
first finding the domain states, each of which has devices
operating in specific modes, thus consuming power. We sum
the consumption values to get a reward value for each domain
state. The reward matrix is formed using these calculated
reward values for all states. The current reward function
penalizes a state for using power. The reward matrix can be
created dynamically since with our clustering approach; we get

a set of connected components of nodes rather than one single
cluster centre. Therefore, a single device mode corresponds to
the connected component of the graph. For our results, we
use the average power consumption value for all the nodes in
a component. However, we may also choose different power
consumption values for different nodes to represent the power
consumption of the device mode and have a more “intelligen”
reward matrix.

F. Method of Validation

Comparing methods for their efficacy in energy optimality
is a reasonably easy task by comparing the expected energy
consumed. However, this is not so trivial for proving that our
approach would work well at preserving human device setting
preference. There is no supervised information present as to
which states are liked or disliked by the user. Neither can
a state lasting over a long time be considered as a desired
state nor can an impulsive change from one state to another
be labelled as a disliked state. Since application functionality
of the devices is not studied; to centrally prevent the need
of manual domain experts, we cannot find more likely or
less likely preferred states usage-wise solely by the power
consumption values. Thus, we require to prove two statements
true simultaneously regarding our system to justify the aim of
this paper effectively:

1) Reduction in clash rate over time, primarily for HD states.
2) Decrease in overall power consumption.

We define Clash Rate as the number of incorrect next state
predictions made by the MDP for the actual future (next time
step from the testing data) per time-slot. It is given by:

s′t+1 = mdp(st) and s′t+1 6= st+1

st+1 ∈ set(sHD + randomLHD)
(3)

Here, subscripts are time steps; s′t+1 is obtained via the
function mdp(st) which takes the previous state st as input.
Thus, s′t+1 does not belong to the set of SHD or SLD states.

Reduction in such clashes indicates that MDP can learn user
state preferences, even if they are costly in terms of power
consumption. Now, clash rate reduction should preferably
occur for these states, since we need to preserve what the
user likes and let the MDP work on the remaining dispensable
states which can help us to reduce the power consumption.

The first requirement shows that MDP understands the
user preferences, and further, we can justify that our system
achieves its primary objective of optimizing power consump-
tion along with user comfort. We show that this power
consumption efficiency comes from swapping most SLD states
with the state outputs of the MDP.

IV. EXPERIMENTS

All experiments have been performed on Ubuntu-16.04,
Intel i5 Processor, and 16GB memory, which indicates that
the proposed model can be deployed on personal computers
efficiently.

A. Data-Set Description

For this study, we apply a real-life data-set that is part of
the UMass Trace Repository and taken from Smart* Data-
set for Sustainability1. Barker et. al. present a way to collect
long-term data, which makes it easier and efficient to map a
users behaviour [15]. The data contains the average electricity
usage of several smart homes collected over regular intervals
of 15 seconds for the following devices: Refrigerator, Freezer,
Washer Dryer, Washing Machine, Dishwasher, Computer,
Television, and Electric Heater. These devices have smart
meters attached to them to record the power consumption
after regular time intervals. We have chosen the data for smart
homes A, B, and C. The data-set collected here is focused on
sensing depth, i.e., collecting as much data as possible from
each home, rather than breadth, i.e., collecting data from as
many homes as possible.

Further, the data-set is divided into two parts: train and
test. We use the training data for calculating MDP parameters,
and the testing data to simulate live user interaction with our
system. There is no distinction between training and testing
data other than the fact that the training data is historical.
Therefore, we assume it to be available from the beginning
of the MDP run. Hence, all pre-processing and analysis are
done on it. On the other hand, the testing data is present as
live data with which we try to simulate the actual interaction
of MDP with the user.

B. Domain State Clustering

TABLE I: Hyper-parameters for Growing Neural Gas Cluster-
ing.

GNG Parameters Device Mode Domain State
Max No. of Nodes 10000 20000
Max. Edge Age 100 50
Decay Rate: After Split 0.5 0.3
Decay Rate: Error 0.995 0.9

We considered clustering experiments using different al-
gorithms such as DBSCAN, K-Means, and Growing Neural
Gas (GNG). S. Dang explains the disadvantages of DBSCAN
along with other clustering algorithms and states that density-
based algorithms like DBSCAN do not take into account the
topological structuring of the data, which is well mapped
by the graphical modelling that GNG performs [16]. It is
because of GNGs incremental nature that it is not necessary
to decide on the number of nodes to use a priori, unlike
the k-means clustering algorithm, where several trials may be
required to determine an appropriate number of centres. GNG
is, therefore, suitable for problems where we know nothing
or little about the input distribution, or the cases in which
deciding on network size and decaying parameters are very
difficult or impossible. Hence, we base our results on GNG
being the primary clustering algorithm.

Bernd explains the use of GNG in its entirety [17]. However,
in our experiments, GNG had to be changed at certain steps

1http://traces.cs.umass.edu/index.php/Smart/Smart

Fig. 3: Cluster Formations on the train data-set. Left: 263
domain state clusters obtained using GNG. Right: 3 device
mode clusters obtained for Appliance 2 using GNG.

where the algorithm is not explicit; for example, tackling the
situation when a node does not have a neighbour and exper-
imenting with the distance metrics used. We obtain device
mode/state graphs and further find connected components that
represent different data clusters. The algorithm is accurately
able to find the number of classes and the associated neurons.
Our prediction is based on the K-Nearest Neighbour approach
upon GNG nodes, where we set k = 3. The hyper-parameters
for clustering have been shown in I. The general parameters
such as number of epochs is set to 150, the number of
starting nodes is 1000, and the algorithm runs for 20 complete
iterations before every single neuron is added.

Other parameters are listed as follows:
1) 1) The value of top is found by studying the variance

among the count of different individual domain states.
We find that setting this to 22% yields the best results.

2) 2) We set fix to be 30% to simulate 1 in every 3
commands as strictly set by user regardless of MDP
output. This has been set arbitrarily to enforce user
authority.

V. RESULTS

We obtain 263, 242 and 240 cluster centres which make up
the domain states, and, on an average, three modes per device,
through Growing Neural Gas. We use 2,000,000 examples
as our training data-se and. 1,000,000 examples as the test
set. For validation, we divide the test set into 1,000 time
slots, where each slot is essentially 1,000 consecutive readings.
For each time slot, the clashes are calculated for SHD +
SLD states. We also show LD state clashes along with Total
Power Consumption averaged over each time slot. All the
experiments for the data of each house have been conducted
independently.

The results for clustering are shown in 3, which corresponds
to graph outputs organized to show clusters for the GNG
clustering algorithm. The left half of the image depicts 263
domain state clusters obtained in our experiments, and the
right half of the image depicts three device mode clusters for
one single appliance.

From Figure 4, we infer the following information :
1) Reduction in total Clash Rate, since clashes for LD

states, is more or less constant, and clashes in SHD +
SLD occurrences reduce over time along with the total
clashes, confirming that MDP is learning user behavior

(a) for smart home A

(b) for smart home B

(c) for smart home C

Fig. 4: Resulting Clash Rates for LD, rLHD(randomLHD) Oc-
currences and corresponding fall in Total Power Consumption.

by outputting a greater number of states which the user
would “like” or prefer.

2) MDP is not only learning user behavior but is also being
specific about learning SHD states. Thus, the system
chooses not to alter the usual user requirements.

3) When the MDP is beginning to learn the behavior, it is
natural to have high number of clashes. However, over
time when the MDP is intelligent enough to predict states,
it outputs a better state than the current LD state, thereby
creating the required scope for improvement regarding
power consumption.

4) Total Power Consumption (in units) reduces over time,
and this reduction is in a nearly linear fashion, in line
with the decline in clash rate for SHD + SLD occurrences.
The average power consumption is around 200 points on
power consumption scale without the intelligent planner.
In all the cases, we achieve convergence before 800
time-slots. This inference is logically consistent with our

TABLE II: Comparison between different methods.

Method Energy
Saved (%)

Considers
User
Behaviour

Autonomous Appliance Scheduling for
Household Energy Management [7] 10.92 No

Intelligent Household LED Lighting
System Considering Energy Efficiency
and User Satisfaction [11]

21.9 Yes

Making Smart Home Smarter: Optimiz-
ing Energy Consumption with Human
in the Loop

30 Yes

observation that the MDP is giving the user enough
time to exhibit their usage habits and hence, adapts
accordingly.
In figure 4, an exciting behavior is observed between
the LD and SHD + SLD occurrences in the plots for the
houses. We elaborate on the same as follows:

5) Around the time slot just before convergence, the plots
in figure 4 contrast to our theory that with a reduction in
SHD + SLD clash occurrences, LD state clashes would
compensate and increase. Figure 4c provides evidence
at time slot 760 in which LD states increase linearly,
whereas there are abrupt changes in SHD + SLD occur-
rences. This behavior, however, further bolsters the point
that our model is adjusting to determine precisely which
LD states need to be ignored and which SHD + SLD
states are to be preferred.

The results show that considering user behavior while trying
to reduce power consumption is a significant factor because the
user must agree with the system when it comes to operating
devices around him. In Table II, we show how the adaptive
configuration of smart devices is quantitatively better than
the other existing techniques. The mentioned methods are
the closest to our problem statement, however, not exact. As
explained in Section II, Byun et. al. do not perceive user
behavior to the extent as our method does, while Adika et. al.
do not take user preference into account at all [7], [11]. Their
result shows around 22% energy saving as opposed to a much
better 30% energy saving achieved by our method. Hence, our
work justifies which states are compromised to obtain energy
efficiency, and performs better at this task while considering
user device setting preferences against other methods.

VI. CONCLUSION

This paper presents an approach to adaptively configure
the smart IoT devices through the effective incorporation of
probabilistic user behavior(s). It takes into account the variance
of devices regarding their application and more importantly,
the user preference. However, it looks at the data only through
power consumption perspective. Simulation of user actuation
is intentionally kept stochastic to showcase that our system is
resilient enough for real-life scenarios. The system uses each
type of information available in the data-set, albeit with certain

assumptions which at no point violate the requirement of
stochasticity. Moreover, the system is made robust via the use
of multilevel clustering. LD/HD states and the MDP algorithm
help maintain an effective trade-off with user-preferred states
and states which consume less power.

Even though current results very well substantiate the ef-
fectiveness of our system, we intend to extend our experi-
ments to accommodate environments where even the clus-
tered domain states are exponential. This problem can be
tackled via enhanced state space approximation techniques
and reduced computational requirements using factored MDPs.
Future work can include formulating novel reward functions,
which are a function of time as well, unlike the current static
function since reward functions may be a function of time
or the frequency of the number of shifts between device
modes, etc. Also, we intend to search for a way to cluster
devices based on their application in an automated manner to
strengthen our automatic intelligent planner further.

REFERENCES

[1] Yoram Chisik. An image of electricity: Towards an understanding of
how people perceive electricity. In Pedro Campos, Nicholas Graham,
Joaquim Jorge, Nuno Nunes, Philippe Palanque, and Marco Winckler,
editors, Human-Computer Interaction – INTERACT 2011, pages 100–
117, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[2] Willett Kempton and Laura Montgomery. Folk quantification of energy.
Energy, 7(10):817 – 827, 1982.

[3] Melanie R. Herrmann, Duncan P. Brumby, Tadj Oreszczyn, and Xavier
M. P. Gilbert. Does data visualization affect users understanding of
electricity consumption? Building Research & Information, 46(3):238–
250, 2018.

[4] Murray Goulden, Ben Bedwell, Stefan Rennick-Egglestone, Tom Rod-
den, and Alexa Spence. Smart grids, smart users? the role of the user
in demand side management. Energy Research & Social Science, 2:21
– 29, 2014.

[5] Jenny Palm, Kajsa Ellegrd, and Mattias Hellgren. A cluster analysis
of energy-consuming activities in everyday life. Building Research &
Information, 46(1):99–113, 2018.

[6] S. S. Yau and A. B. Buduru. Intelligent planning for developing
mobile iot applications using cloud systems. In 2014 IEEE International
Conference on Mobile Services, pages 55–62, June 2014.

[7] C. O. Adika and L. Wang. Autonomous appliance scheduling for
household energy management. IEEE Transactions on Smart Grid,
5(2):673–682, March 2014.

[8] M. Jahn, M. Jentsch, C. R. Prause, F. Pramudianto, A. Al-Akkad, and
R. Reiners. The energy aware smart home. In 2010 5th International
Conference on Future Information Technology, pages 1–8, May 2010.

[9] Markus Eisenhauer, Peter Rosengren, and Pablo Antolin. Hydra: A
development platform for integrating wireless devices and sensors into
ambient intelligence systems. In Daniel Giusto, Antonio Iera, Giacomo
Morabito, and Luigi Atzori, editors, The Internet of Things, pages 367–
373, New York, NY, 2010. Springer New York.

[10] C. Wei and Y. Li. Design of energy consumption monitoring and
energy-saving management system of intelligent building based on the
internet of things. In 2011 International Conference on Electronics,
Communications and Control (ICECC), pages 3650–3652, Sep. 2011.

[11] J. Byun, I. Hong, B. Lee, and S. Park. Intelligent household led
lighting system considering energy efficiency and user satisfaction. IEEE
Transactions on Consumer Electronics, 59(1):70–76, February 2013.

[12] Jose Costa and Ricardo Oliveira. Cluster analysis using growing neural
gas and graph partitioning. pages 3051 – 3056, 09 2007.

[13] J. R. Norris. Markov Chains. Cambridge Series in Statistical and
Probabilistic Mathematics. Cambridge University Press, 1997.

[14] Bernhard Nebel Wolfram Burgard and Martin Riedmiller. Acting under
Uncertainty: Choosing Individual Actions, Markov Decision Processes
(MDPs), Value Iteration. http://gki.informatik.uni-freiburg.de/teaching/
ss14/gki/lectures/ai13.pdf, 2014.

http://gki.informatik.uni-freiburg.de/teaching/ss14/gki/lectures/ai13.pdf
http://gki.informatik.uni-freiburg.de/teaching/ss14/gki/lectures/ai13.pdf

[15] Sean Barker, Aditya Mishra, David Irwin, Emmanuel Cecchet, Prashant
Shenoy, and Jeannie Albrecht. Smart*: An open data set and tools for
enabling research in sustainable homes.

[16] Shilpa Dang. Performance evaluation of clustering algorithm using
different datasets. IJARCSMS, 3:167–173, 01 2015.

[17] Bernd Fritzke. A growing neural gas network learns topologies. In
Proceedings of the 7th International Conference on Neural Information
Processing Systems, NIPS’94, pages 625–632, Cambridge, MA, USA,
1994. MIT Press.

	I Introduction
	II Related Work
	III Proposed Methodology
	III-A Flow of Data
	III-B Two-Step Clustering
	III-C Actions and Actuations
	III-D Domains State Types
	III-E Reinforcement Learning Agent
	III-E1 State Space
	III-E2 Transition Matrix
	III-E3 Updating Transition Matrix
	III-E4 MDP Algorithm
	III-E5 Reward Function
	III-E6 Reward Matrix

	III-F Method of Validation

	IV Experiments
	IV-A Data-Set Description
	IV-B Domain State Clustering

	V Results
	VI Conclusion
	References

