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Abstract—Resource management and job scheduling are two 
problems that go hand-in-hand and the solutions to which are 
primarily dependent on the nature of workload. With increasing 
demand to automate the entire process from allocating resources 
to scheduling jobs efficiently, deep reinforcement learning 
techniques have been brought into the picture which adapt to the 
environment and learn from experience. In this paper, we present 
SchedQRM which classifies burst time of jobs based on their 
signature and employs Deep Q-Network algorithm to find an 
optimal solution for any arbitrary job set. We also evaluate our 
proposed work against state-of-the-art heuristics to show the 
efficacy of our approach. 
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 Introduction  

Resource management has always been a tricky 
domain in the field of research and has become 
increasingly significant due to the rapid 
developments in production technologies. The 
problem of optimal allocation and use of resources 
has been dealt in the past in several ways [1-5]. 
Improvement in the classical measures of efficiency 
due to periodic rescheduling has already been 
addressed in the past alongside the undesirable 
effect of compromising stability. 

Considering the heuristics on which 
Reinforcement Learning (RL) algorithms work, we 
believe that RL approaches and methodologies fit 
well in the domain of resource management and job 
scheduling since they shall allow the machine to 
check for the best possible order of scheduling for a 
set of jobs, given the resource and burst time 
requirements for each job. 

Our approach is an extension to the idea of 
machines being able to handle resources on their 
own in a justified manner. RL has gained attention 
in the field of machine learning research. The 
concept of decision-making had been introduced 
earlier in the research problems of resource 
management and job scheduling. RL revolves 

around agents which interact with the environment 
to accomplish a task. For each action it takes during 
its discourse through the environment, the agent 
receives a reward -positive or negative, based on the 
result of the action it takes. The agent has no prior 
knowledge of the task to be performed and learns 
based on the reward it receives. 

We design and evaluate SchedQRM, an online 
multi-resource job scheduler, in our approach to 
applying RL for solving the problem of resource 
management. A set of jobs are fed into the 
scheduler as an input along with their job signature, 
and no pre-emption is allowed. The scheduler aims 
to optimize average job slowdown or job 
completion time by minimizing it.  

Related Work 

Resource allocation problem has been addressed 
in various contexts such as in Radio Networks [1], 
Software Defined Networking [2], mobile cloud 
computing networks [3] and in wireless 
communication networks [4]. Wan et al. [5] in their 
paper propose a resource allocation algorithm to 
maximize throughput for hybrid Visible Light 
Communication (VLC) and Wi-Fi networks. In all 
these papers, we observe that increase in the 
throughput, whatever the requirement may be, has 
been the primary objective. 

The objectives while scheduling jobs/tasks at 
hand vary in context from minimizing CPU energy 
[6] to reducing total completion time on a single 
machine [7]. With the advent of Big Data and 
Machine Learning approaches, Karim H. and 
Ahmed J. in [8] proposed an approach for 
scheduling tasks in Big Data Cluster and showed a 
comparison with the traditional task schedulers such 
as the First-In-First- 
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Out (FIFO) scheduler and the Capacity Scheduler. 
Fuming et al. in [9] proposed the concept of a 
virtual scheduling pool whereas Zhao P. and Huang 
T. in [10] incorporated a genetic algorithm to solve 
the problem of single resource dynamic Job-Shop 
scheduling. Smart manufacturing domain also faces 
with a real-time requirement of job scheduling 
which has been tackled using a hybrid computing 
framework [11]. 

Resource Isolation Policy (RIP) combined with 
static as well as dynamic scheduling strategy was 
proposed by Liu et al. [12] to solve the problem of 
hard real-time task deadline. In [13], the authors 
characterize the performance of scheduling policies 
for wireless systems that are based on Cumulative 
Density Functions (CDF). Su N. et al. [14] 
incorporated genetic programming to propose an 
automatic design of scheduling policies which 
shows outstanding performance on unseen 
simulation scenarios. Particle Swarm Optimization 
(PSO) [15] algorithm has also been used for 
optimizing task scheduling in the field of cloud 
computing. 

Survey on the past work is done which shows the 
use of reinforcement learning approach to designing 
feedback controllers for discrete as well as dynamic 
systems [16]. In [17], the authors proposed an 
adaptive Neural Net-based controller using RL for a 
class of nonlinear systems which does not require 
information about the system dynamics. RL has also 
been used to solve the problem of resource 
allocation [18] where the authors combine the 
strengths of RL and queuing models in a hybrid 
approach. However, our inspiration has been from 

the work of Hongzi M. et al. in [19] where the state 
space has been represented pictorially and fed into a 
deep reinforcement learning network to find the 
optimal scheduling policy for a given job-set. 

Background 

This section discusses the techniques in brief that 
we have worked upon in this paper. 

Burst Time Classification:  Prior knowledge 
of the burst time of a job helps exceptionally well in 
resource allocation and job scheduling. In a few 
cases, the burst time (run time) of a job is known, 
but mostly an approximation needs to be made. We 
divide the burst time of every job into a certain 
number of classes based on the job environment. 
Every job has a signature/set of attributes. These are 
fed to a neural net classifier to classify jobs and 
approximate the burst time. 

Reinforcement Learning: Consider a 
scenario where there is an agent which interacts 
with an environment. The agent observes a state st 
and chooses an action at  at each time step t, from 
the set of possible actions. Once the action is taken, 
a state transitions takes place from st to st+1, 
following which a reward rt is given to the agent. 
The state transitions and rewards are assumed to 
have the Markov property; i.e., the action to be 
taken by the agent in the current state st is 
independent of the states that preceded st. 

Note that the agent has no prior knowledge of 
which state of the environment would it transition to 
or what reward it may receive, once it chooses to 
take action at. It is while interacting with the 

Figure 1: Flow of data in our proposed model. 
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environment, during training, that the agent will be 
able to observe the value of these quantities. The 
expected cumulative discounted reward: 
 [∑    

     ], where   (   ] is the discount factor 
for future rewards, needs to be maximized through 
learning. 

Deep Q-Network (DQN): DQN is a type of 
Temporal Difference (TD) learning method. With 
the use of TD learning methods, the estimate of the 
final reward calculated at every step for each state 
can be formally expressed as: 

 (  )   (  )   [       (    )   (  )].
 (1) 

Where, V(st) represents the utility value of state st,   
is the learning rate,   is the discount factor and      
is the observed reward at time    . Compared to 
Monte Carlo methods [20], where the Q values are 
updated after the end of an episode; here, the Q 
values are updated after ever action. This helps in 
guiding the agent to the goal state more efficiently. 
The agent uses DQN because of the advantages that 
it offers in solving the scheduling problem through 
Experience Replay. Experience Replay is a circular 
queue which stores agent’s experiences in form a 

tupple et=(st, at, rt, st+1). Here, the agent takes an 
action at to move from state st to st+1 and gains a 
reward rt. This helps reducing correlation between 
transitions when the neural network has to be 
updated. The learning speed of the model increases 
with mini-batches that are made by DQN to update 
the neural network being employed. It also reuses 
past transitions to avoid catastrophic forgetting 
which speeds up learning and also breaks 
undesirable temporal correlations. Thus, DQN is 
believed to achieve stable training. 

 

Figure 2: Pictorial representation of a sample state in SchedQRM. 

Design 

In this section, we present the design of 
SchedQRM. We describe the problem and also its 
formulation as an RL task. We then explain our 
solution to this problem based on the techniques 
described in the previous section. 

Model 

As shown in Figure 1, we divide our model into 
2 sections- Section A and Section B. 

Section A takes job signature as an input and 
predicts the burst time for the job using a Deep 
Neural Network (DNN). Resource requirements 
along with the burst time for the job are sent as an 
input to the waiting queue. 

Section B consists of the DQN model which 
outputs a scheduling policy for a given job set. All 
the jobs from the waiting queue are fed into the 
environment as a starting state. 

We consider a cluster with k resource types (e.g. 
CPU, I/O, memory) and it is treated as a single 
collection of resources. Jobs arrive at the cluster in 
discrete timestamps. One or more of the waiting 
jobs are chosen to be scheduled by the scheduler at 
each timestamp. The resource requirement of each 
job j is given by the vector    (            ), 
where ri represents the number of instances of 
resource i required by the job and   [   ]. We 
define Tj as the duration/execution time of the job. 
Given the above information, the DNN correctly 
places each job into a class from the set 
(            ), where ci represents a class of jobs 
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that requires resources for i timestamps. The jobs 
are assumed to be non-preemptive for the sake of 
simplicity. Also, rj must be allocated to the job j 
continuously from the time that the job starts 
execution until completion.  

The simplicity of the model can allow it to 
be used in other domains of application where a 

similar type of input is provided containing a set of 
jobs along with their resource requirements. Given 
this information, our design of the model will 
identify the execution time requirement of the job 
by learning from the  experience. This information 
shall further be passed to the DQN agent which will 
schedule these jobs. 

TABLE I: INPUT DATASET TO THE NEURAL NET CLASSIFIER 

 interp gnu.hash dynsym dynstr rela.dyn rela.pit pit text rodata eh_frame_hdr eh_frame got got.pit bss symtab strtab filesize time 

0 28 0 5 2 0 4 1 645 32064 1 0 0 1 0 1 764 49768 1.0 

1 28 0 5 2 0 4 1 645 32072 1 0 0 1 0 1 764 49768 1.0 

2 28 0 5 2 0 4 1 645 32080 1 0 0 1 0 1 764 49768 1.0 

 

Objective: Similar to the prior work shown in 
[19], we use the average job slowdown as the 
primary objective for our agent. Formally, the 
slowdown for each job i is given by         , 
where Cj is the completion time and Tj is the burst 
time of the job. Completion time of a job is the time 
between arrival and completion of execution; note 
that     . If the completion time of the job is not 
normalized by the job's duration, the solution will 
be biased towards large jobs. 

Burst Time Classificaion 

Dataset creation:  To create the dataset for 
burst time prediction, we use C++ object files for 
four programs to generate job signatures, namely: 
Matrix multiplication, Quicksort, Fibonacci series 
generator, and a random number generator. A script 
is deployed to create Executable and Linkable 
Format (ELF) files with various input sizes, and it 
collects the job signatures through the readelf bash 
command. We run this script until 100,000 data 
points are created. File size and run time are also 
stored for every ELF file along with the signature. 
Table I represents 3 out of the total data points/rows 
of the data-set that are fed into the neural network 
classifier for training. This dataset was created on 
an Intel core i7-6700 quad-core, 64-bit x86 
processor and 8+8GB DDR4 3000mhz Corsair 
RAM.  

RL formation  

State Space: We represent a pictorial 
representation of a single state of the system as 
shown in Figure 2. This state contains information 

regarding the current resources' allocation, the jobs 
in the waiting queue and the jobs present in the 
backlog. The left-most clusters represent the 
allocation of resource instances to jobs which have 
been scheduled for service as of the current 
timestep. Here we have assumed two types of 
resources with three instances available for each of 
them. The resource allocation shown is present 
starting from the first timestamp till t timestamps, 
each row representing a timestamp. Jobs in the 
waiting queue belong to one of the time slots 
belonging to the vector    (            ), 
where i refers to the number of timestamps required 
by a job to complete its execution; for example, the 
job in time slot T2 requires one instance of resource 
A and zero instances of resource B for two 
timestamps. The different numbers within the 
resource clusters represent different jobs belonging 
to the respective time slots that have already been 
assigned resources and are undergoing or are about 
to begin execution; for example, 2 represents that a 
job belonging to T2 has currently been assigned two 
instances of Resource A and three instances of 
Resource B for two timestamps. The first job of a 
certain burst time is represented in it's appropriate 
job slot while others wait for their turn in the 
backlog. The tth box in the backlog stores the 
number of jobs with burst time t. For example, in 
Figure 2, there is one job of burst time 1 and two 
jobs of burst time 2 in the backlog.  

Our state representation is a modified version of 
the state representation shown in [19], unlike which, 
we have a fixed representation of jobs based on 
their burst time. This fixed representation allows us 



 

55 

Proc. of the Eighth Intl. Conf. on Advances in Computing, Communication and Information Technology - CCIT 2019 
Copyright © Institute of Research Engineers and Doctors. All rights reserved. 

ISBN: 978-1-63248-169-6 DOI : 10.15224/978-1-63248-169-6-09 
 

to represent a state as an array of numbers and 
obviates the need for pictorial representation of a 
state and involvement of lofty convolutional neural 
networks. Hence, our input to the model is a 
flattened array representation of Figure 2. 

Note: By having a fixed time representation, only 
a single job of a particular burst time can be 
represented in a state. Multiple jobs of same burst 
time have to wait in the waiting queue which might 
hinder the learning of the agent. However, it helps 
significantly in an optimized representation of any 
arbitrary job set which makes our algorithm very 
robust. 

Action Space: We choose the action space to 
be simple, and it is given by at ∈ {1, 2,..,i,.., N}, 
where N is the maximum burst time and at = i 
means that the agent should schedule the job at the 
ith slot, which, because of our fixed time state 
representation, has a burst time of i. A valid 
decision is one in which the agent chooses to 
schedule a job at the non-empty slot. An invalid 
decision is the one where the agent selects an action 
corresponding to an empty slot as it makes no sense 
to schedule a job which does not exist. Once the 
agent takes a valid decision, a job is scheduled in 
the first possible timestamp of the resource clusters 
in which the resource requirements of the job can be 
completely satisfied till completion. A state 
transition is then observed: the scheduled job is 
allocated it’s appropriate position in the resource 
clusters. 

Rewards: Since DQN is a TD learning method, 
we have crafted a dynamic reward system that will 
guide our agent to the optimal policy by giving an 
appropriate reward at every time step. We do this by 
maintaining a counter c for the current time in the 
environment. If the agent decides to take action at, 
then it is given a reward rt = - (at + c/at). If no job 
exists at the chosen time slot, then a very high 
negative reward is given. We set the discount factor 
  = 1 so that the cumulative reward of an episode 
equates the negative of the sum of job slowdown. 
This way, maximizing the cumulative reward over 
an episode is equivalent to minimizing the average 
slowdown. 

Evaluation 

We evaluate SchedQRM to answer the following 
questions: 

1. How accurately does the DNN time classifier 
predict the burst time of incoming jobs? 

2. How does SchedQRM compare with state-of-
the-art heuristics when scheduling online 
jobs having multiple resource requirement? 

Classifier Training and Testing:  Before 
training the agent for job scheduling, we train a 
DNN classifier over the job signature to predict the 
burst time. Rather than using burst time as a 
continuous variable, we classify it into ten equally 
spaced classes. This classification helps 
significantly in our RL formulation. Data points 
with outliers and large burst times are discarded to 
keep the classes  

TABLE II: CLASSIFICATION REPORT FOR DNN TIME CLASSIFIER 

 Precision Recall F1-Score 

Class 1 1.00 0.99 1.00 

Class 2 0.95 0.99 0.97 

Class 3 0.99 0.96 0.97 

Class 4 0.94 0.93 0.93 

Class 5 0.89 0.86 0.88 

Class 6 0.88 0.95 0.91 

Class 7 0.94 0.90 0.92 

Class 8 0.92 0.98 0.95 

Class 9 0.98 0.81 0.89 

Class 10 0.83 1.00 0.90 

 

 

Figure 3: Training loss curve of the classifier. 
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balanced. A simple DNN classifier with 100 hidden 
layers, 10 output layers and a learning rate of 
0.0001 is trained over 70,000 data points. Rest of 
30,000 data points are used to test our model. Our 
model efficiently converges after 120 iterations by 
using Adam optimizer [22]. 

Given the signature of a job, the classifier can 
predict the burst time class of that job with high 
accuracy, and this can be seen from Table II. The 
table shows the values of three evaluation metrics 
we have calculated for each class 1-10, namely- 
Precision, Recall, and F1-Score. The classifier can 
yield satisfying results for each of the classes. 
Figure 3 shows the training loss curve of the 
classifier and it’s convergence. 

DQN Training and Testing: We create a 
complete job scheduling environment with custom 
states, actions, and rewards. Our agent explores this 
environment and learns an optimal policy with the 
help of two neural networks and a replay memory as 
used in the DQN algorithm. To implement 
Experience Replay, we have used a circular 
memory buffer called replay memory  which stores 
new transitions by overwriting the previous ones. 
The purpose of using a replay memory is: 

1. Remembering experience: By storing and 
sampling transitions from experience replay, 
our agent gets exposed to a broader set of 
experience and knowledge that helps the 
agent learn more efficiently. 

2. De-correlation: If we merely train our agent 
in sequential order, we risk getting our agent 
influenced by the correlation between 
consecutive states. By randomly sampling 
transitions from the experience replay, we 
enable learning from an independent and 
identically distributed experience. 

Job signatures are picked at random from the 
dataset and fed to the system in an online fashion. 
This way SchedQRM is trained for arbitrary jobsets 
and is expected to optimally schedule any set of 
jobs. which makes it very robust. The cluster load or 
the number of jobs selected are varied as a 
percentage of the number of time classes from 10% 
(1 job for 10-time classes) to 200% (20 jobs for 10-

time classes). This set of job is then passed to the 
DNN classifier to estimate the time of each job. On 
random, for every job, a dominant or both equally 
dominant resources are chosen. 

In the case of dominant resource, it's resource 
requirement is chosen between 50% and 100% of 
maximum resource instances while for the other 
case, it is chosen in between 0% and 50%. In the 
case of equally dominant resources, the resource 
requirement for both the resources is chosen 
randomly between 10%-100% of total instances. 
Such job sets are then used to train the SchedQRM. 

Every new job set is loaded into the 
environment's initial state. DQN trains on these job 
sets to finally converge and form an optimal policy 
which can be used to determine a scheduling policy 
for any new arbitrary job set. As stated earlier, we 
have used two neural networks namely the evaluate 
network and the train network for our learning 
algorithm. 

The weights of the train network are transferred 
to the evaluate network after every 1000 
timestamps, and this helps in stabilizing the DQN 
algorithm. Each neural network has a single fully 
connected hidden layer and 20 output layers, one 
each for an action. The replay memory is a buffer of 
length 2000. We set the learning rate α = 0.01, ε = 

0.9 and   = 1 for training our agent.  

Figure 4 represents the plot of the burst time of a 
job belonging to one of the classes from Class 1 to 
Class 10 versus the average job slowdown time 
measured over different jobsets. The extended line 
shows the maximum slowdown time that was 
observed for a job belonging to any class.  
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Figure 4: Performance of SchedQRM in terms of average job slowdown. 

 

Figure 5: Job slowdown at different levels of load. 

A general trend of longer jobs having higher 
slowdown is observed. This indicates that the agent 
is withholding longer jobs to make space for shorter 
jobs which helps in reducing the overall job 
slowdown. 

Figure 5 illustrates a comparison between state-
of-the-art Packer (the packing heuristic in [21]), 
Tetris [21], DeepRM [19] and SJF (Shortest Job 
First) algorithm with our proposed SchedQRM. For 
all cluster load values, SchedQRM performs either 
better or equivalent to the existing heuristics. The 
plot is made by averaging 100 arbitrary job sets at 
average cluster load value and observing the 
average job slowdown of all these jobs.  

Conclusion 

This paper presents our proposed approach for 
automating an end-to-end process from predicting 
the burst time of tasks and/or jobs until scheduling 
them. To achieve this, we present a 2-section model 
each of which performs one of the tasks stated 
above. Our RL agent focuses on the criterion of 
average job slowdown. The experiments show that 
our scheduler SchedQRM outperforms the ad-hoc 
heuristics. There are certain limitations faced by our 
model. Firstly, SchedQRM, when trained for 
average job slowdown, performs not as good as the 
DeepRM scheduler because of fixed time 
representation used by the authors in [19]. Our 
agent is unable to choose two jobs of the same burst 
time together; instead, it selects one of them and 
keeps the other in the backlog. However, such a 
representation makes SchedQRM much more robust 
and optimized, and SchedQRM is both trained and 
capable of working over arbitrary job sets. The 
second challenge is to interpret the policy used by 
the agent to reach an optimal goal. In general, it 
holds longer jobs to allow shorter jobs to schedule 
first, but interpreting the complete policy remains a 
challenge. We believe these challenges would 
further motivate research directions in the future.   
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